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Solutions of the heat equations

{
UxAx,t) = u,(x,t)

u(x,O) = F(x)

on (- 00, 00) x {t > O}
on (-00,00),

where F belongs to the weighted L2(~, exp( - ax 2) dx I space, are used in order to
study best approximation problems. (9 1994 Academic Press, Inc.

1. INTRODUCTION

Throughout this paper, a is a non-negative constant. Let IR = ( - 00,00)
and for 1 - 2at > 0 let

X E IR.

Let uf·(x, 0,0 < t < 1/2a, denote the solution of the Cauchy problem

and

U(X,O) = F(x)

on IR X {t > O}

on IR,

(1.1 )

( 1.2)

where FE L2[1R, exp( -ax 2 ) dx). We then have

(see Theorem 2 below).
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(2.1 )

Given h E L2[~, exp{Wa,,(x)} dr], with t fixed, we want to minimize the
expression

!.luF(x,t) -h(x)1
2
exp{Wa. t (x)}dr,

R

where F runs over L 2[1R, exp( - ax 2) dr]. We have two main results.
First, we determine a necessary and sufficient condition on h for which

there exists F E L2[~, e- ax2 dr] with

f~luF(X,t) - h(x)1
2
exp{Wa.t (x)}dr = O.

Since if uF(x, t) is a solution of (1.1) and 0.2) then UF(Z, t) is an entire
function of z, the condition on h is connected with the analytic extension
of h to the complex plane.

Secondly, we will construct for any given h in L2[1R, exp{Wa,/x)} dr] the
minimizing sequence (U F) for which

Some aspects of our method have appeared in [1].

2. SOLUTION SPACE

We first characterize the Hilbert space formed by the solutions uF(x, t)
of (1.1) and 0.2) using the theory of reproducing kernels [5].

We define a linear operator L on functions F E e[lR, e -ax
2
dx] by

LF(x) = (F(O,h(x - g,t)ea{2)L'[R,e-aedO

=uF(x,t),

where h(x,t) is the heat kernel 0/.f4rrt)e-x' / 4r• Then the range of L
forms a Hilbert space HK(a, t) with the reproducing kernel

K(z,u;a,t) = (h(z - ~,t)eae,h(u - g,t)eaeL_'[R.e-af'd{]

= lh(z-g,t)h(u-~,t)eaedg
IR

1 {1 - 4at 2}__;======= exp - Z
2J2rrt(1 - 2at) 8t(1 - 2at)

. exp{ - 8t:1__4;~t)u2}exp{ 4t(1 ~ 2at)}'
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Furthermore, the norm in HK(a,t) satisfies the isometrical identity

By the arguments in [7, Theorems 3,1 and 4.1] we obtain

THEOREM 1. For any fixed t, 1 - 2at > 0, the solutions UF(X, t) of
(1.1 )-( 1,2) are extensible analytically on C in the form U F( z, t) and form the
reproducing kernel Hilbert space HK(a, t) with the norm

Furthermore the initial functions F are given by

,,~2

F(g)=s- lim V e if uF(z,t)h(z-g,t)
N-->oo 27Tt(I-2at) Izl<N

where the limit is taken on L 2(1R, exp( -agz) dH

Note that

Thus the second part of Theorem 1 follows formally from

where 8'1' is the dirac delta centered at ip.
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In Theorem 1, from the identity

11 UF(Z,t)hCZ-qJ,t)exp{wa,t(X) - y

2
}dxdY

!< Iyl <N 2t

229

= 11F(x')exp{Wa,r(X)}
!< !<

X (f h(z - x', t)h(Z - qJ, t)e- y1
/

2t dY ) dx' dx
Iyl <N

(
sin N( (x' - qJ) /2 t) )

=211F(x')h(x-x',t), dx' h(x-qJ,t)
!< !< (x - qJ)/2t

, exp{Wa,/(x)}dx,

we have the pointwise convergence in the form

at'
F(O = lim..j e 11 uF(z,t)h(z - ~,t)

N->oo 27Tt(1-2at) IRlyl<N

, exp{w (x) - ~} dxdy,
a,r 2t

3. INEQUALITY OF FEJER-RIESZ TYPE

We define the linear operator T: HK(a,t) -+ L2[1R, exp{Wa,t(X)} dx] by
the restriction Tf of f to IR. Then, the following inequality of Fejer-Riesz
type (d. [3]) implies that T is well-defined and bounded on the space
HK(a,J)'

THEOREM 2. For any f E HK(a, l)' the following inequality holds:

(3.1 )

Here, the constant 1 as the coe1Jicient o{ IIfll~K is best possible in the
la,/)

inequality .

Proof From the kernel form (2.1) and [2, Sect. 8 in Part 1], f( E HK(a. I»

is expressible in the form

1 {I - 4at }
fez) = 2..j27Tt(1 _ 2at) exp - 8t(1 _ 2at) z2 f1(z), (3.2)
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where II(z) is a member in the reproducing kernel Hilbert space HI
determined by the positive matrix

K'(z,u;a,t) = eXP{4 (ZU )}.
t I - 2at

Moreover, we have the isometrical identity

2 I 2

II/IIHK(a,tl = 2v2Trt (1 _ 2at) II/I 11H,.

Meanwhile, we recall the identity

(3.3)

V2t(1 - 2at) { -Z2 }
K'(z, u; a, t) = Tr exp 8t(1 _ 2at)

. exp{ (_/1
2

}f.eZ?eU~exP{-2t(1 - 2at)e}d€.
8t 1 - 2at) ~

This representation implies that II is expressible in the form

/2t(1 - 2at) { -Z2 }
II(z) = V Tr exp 8t(1 - 2at)

.f.FI(OeZ~exP{-2t(1- 2at)e}d€ (3.4)
~

for a function F1 satisfying

f.I FI( 012 exp{ - 2t( 1 - 2at)e} d€ < 00
~

and we have the identity

_/2t(I-Zat) 2

II/III~, = V Tr f~1 F I ( 0 I exp{ - 2t( 1 - 2at)e} d€ (3.5)

(see [5]). By applying Plancherel's theorem to (3.4), we have, from (3.5)

{
_y2 }

f~l/l(iY)12exp 4t(1 _ 2at) dy

= 4t(1- 2at)1\F I(O\2 exp{-4t(1- Zat)e}dt
~

~ 4t(1 - 2at)!.IFI(OI2 exp{-2t(1 - 2at)e}d€
~
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Put g(z) =!I(-iz). Then, g belongs to HI' and IIgllH, = II!IIIH ,. Hence,
we have

fRlfl(x)12exp{ 4t(1-::at)} dx = fRlg(iY)12exp{ 4t(1-::at)} dy

~ 2V2rrt(1 - 2at) II!lll~" (3.7)

Hence, from (3.2), (3.3), and (3.7) we have the desired inequality.
Next, we refer to the sharpness of the inequality. For any a: 0 < a < 1,

we set

Sa(O = aexp{-2t(1 - 2at)e} - exp{-4t(1- 2at)e}.

Since the sharpness of the inequality depends on that of the inequality in
0.6), for any a it is sufficient to construct a member in e[lR, exp{ - 2t(l ­
2aOe} dt] satisfying

However, since SaW) < 0, the existence of G/t) is apparent.

4. EXISTENCE OF BEST ApPROXIMATION

For any fixed t: 1 - 2 at > 0 and for a function h E

C(IR, exp{J¥,,) x)} dx], we determine a condition for the existence of the
approximation uF(z, t) E HK(a,l) in the sense that there exists a member
Fin L2 [1R, exp(-ax 2) dx] such that

THEOREM 3. For h E L2[1R, exp{Wa. I( x)} dx], there exists a member F E

L2[1R, exp( - ax 2) dx] satisfying (4.1) if and only if

1 1

2
(1 + 4at)t 2 ztft f~h(oexp{ - 8t(1 - 2at) + 4t(1 _ 2at) } dt

{
-3X2 + y2 }

. exp 12t(1 _ 2at) dxdy < 00. ( 4.2)
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Proof First, note that the adjoint operator T* of T is well-defined by
Theorem 2, and

[T*G]( z) = (G(-), K(-, z; a, t) )L2[~,exP(Wa ,(x»)dx

for G E L 2[IR,exp{Wa,/x)}dt]. Since {K(',z;a,t)lz E C} is complete in
L2[1R, exp{Wa , /x)} dt], the operator T* is one to one, Hence there exists a
member F in e[lR,exp(-ax 2 )dt] satisfying (4.0 if and only if T*h
belongs to the range of HK(a,l) under the operator T*T. If f is a member
in the range of T*T, we can write, by a member g in HK(a,t) with
T*Tg = f,

f( z) = (T*Tg, K(-, z; a, t) )uK(a",

= (g, T*TK(', z; a, t)) UK(a.f)' (4,3)

Following the general idea in [5], we characterize the members in the
range of T*T. From the expression (4.3), we compute the complex kernel
form

k( z, u; a, t) = (T*TK(', u; a, t), T*TK(', z; a, t))flK(a,f)

= (TK(·, u; a, t), TT* TK(', z; a, t) )L2[~,exP(Wa ,(x)jdx)'

Meanwhile,

[T*TK(·,u;a,t)](z) = (TK(·,u;a,t),TK(·,z;a,t))L2[~,exP(Wa,(x)}dx)

1 {(1 - 8at) z 2 }
~;=====:== exp -
4lTT't(1 - 2at) 16t(1 - 2at)

{
(I-Sat)U2} { zu }

. exp - 16t(1 _ 2at) exp 8t(1 - 2at) .

(4.4)

Hence we obtain the identity

_ { (1 - 12at)Z2}
k(z,u;a,t) = 2V61Tt (1- 2at) exp --2-4t-(-1---2a-t-)

.exp {_(1-12at)U
2 }exp { zu }

24t( 1 - 2at) 12t( 1 - 2at) .
( 4.5)

Meanwhile, from this expression (4.5), we see that Hz, u; a, t) is the
reproducing kernel for the Hilbert space Hk(a, t) consisting of all entire
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functions g with finite norms

2 1 Ii 2IlgIIHk(a,t) = V Ig(z)1
61Tt( 1 - 2at) c

{
(6a/ - 1)y2}

. exp Wa , ( x) + dx dy
, 6/(1 - 2at)
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(4.6)

(see the similar argument in [6]). From the representation of T*, we have
the desired theorem.

5. REPRESENTATION OF ANALYTIC EXTENSION

For h in L 2[IR,exp{Wa ,(x)}dx] satisfying (4.2), note that from (4.0,
h(x) is extensible analyticidly onto C except for a set of measure zero and
the analytic extension h( z) belongs to H K(a, I)' We give the following
representation of h( z) in terms of h(0:

THEOREM 4. For a member in L2[1R, exp{Wa I(X)} dx] satisfying (4.2),
the analytic extension h( z) is expressible in the fa;"'"

1 { (1 - 8at) z 2 }

h(z) = 16v'3{1Tt(1- 2at)}3/2 exp - 16t(1 - 2at)

-jfc[f~h(oexp{- ~;(7 ~a~~~; + 4t(1 ~g2at)} d g ]

(
(19 - 16at)X 2 (-65 + 48at)y 2

. exp + -------
16t(1-2at) 48/{1-2at)

Zz+iXY l+ dXdY,
8t(1-2at)

Z=X+iY. (5.1)

Proof Let S be the adjoint operator of T*T from Hk(a,t) to HK(a,t).

Then, since T*T is an isometry of HK(a.l) onto Hk(a,l)' the operator S is
the inverse of T*T. Moreover, T*h = T*TST*h, and h = TST*h. Hence,
from (4.6) we have the desired representation

h(z) = [ST*h](z)

= (ST*h,K(',z;a,t»uK(a,t)

= (T*h, T*TK(', z; a, t»Hk(a(/'
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Meanwhile, from Lemma 1 in [4] we can obtain another representation
of h(z).

Since h(z) belongs to the space HK(a,t)' the norm of h(z) in Hk(a,t) is
expressible in the form

1 1 {-aZ
2

}1

2

Ilh\I~K(a,f) = ...; .... if h(z)exp 2(1 2 )
2rrt(1 - 2at) c - at

{
y2 }. exp - dxdy

2t( 1 - 2ar)

00 {2 t (1 - 2at )} " j [ {_ ax 2 }] 2

n1::
o

n! ~ a; h(x)exp 2(1 _ 2at) dx.

(5.2)

Hence, from the reproducing property in HK(a,t)' we have

h(z) = (h(-),K(-,z;a,t»IfK(.,I)

00 {2t(l - 2at)( [ { 1 }]
= L: , j a; h (0 exp -2 Wa ,,(0

n =0 n. ~

.a;[ K ( ~, z; a, t ) exp {~wa , t ( 0 }] dg.

6. ApPROXIMATION BY THE SOLUTIONS

For any h E L 2[1R, exp{Wa ,(x)} dx], we construct a sequence {u,,(z)}
such that u,,(z) E HK(a,t) and

lim jlu,,(x) - h(X)/2 exp{Wa ./(x)} dx = O.
n-+ DC ~

First note that the images

f(z) = (T*g)(z) = (g(-),TK(-,z;a,t»)L2[H,exp{W./x)}dx]

of the members g in L 2[IR,exp{WaJx)}dx] are characterized as the
reproducing kernel Hilbert space H I'.(a. t) whose reproducing kernel is

IK( z, u; a, t) = (TK (' , u; a, t), TK ( . , z; a, t» L 2[H, exp{W.,/(x)} dx]'
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From the concrete expression (4.4) of lK(z, u; a, t) we see that the family
of functions

I[ n_/ ]-1/2Cf!n(z) ="2 n!{8t(I - 2at)} v7Tt(I - 2at)

{
(1 - 8at)z2 }

. exp - Z n (n = 0, 1, 2, ... )
16t(1 - 2at)

is a complete orthonormal system in H'I«a,t). Note that

(6.1 )

n = 0,1,2, ....

We set

and

N

IN(z) = L anCf!n(z).
n~O

Then, IN E Hk(a.t) C H'j(o,t) and the sequence {IN} converges to T*h in
H'j(o,t) as N tends to infinity. As in the proof of Theorem 4.1, we
construct the sequence u~ satisfying

T*Tu~ = IN'

Since the adjoint operator T* is an isometry of L 2[1R, exp{Wo J x)} dd
onto H'j(O, r)' we obtain

THEOREM 5. For any hEL2[IR,exp{Wor(x)}dx], let the sequence
{u~}~~o be constructed by the above method. Then, we have

7. REPRESENTATION OF PASSED TIME

Most of initial value problems for the heat equations in which one is
interested deal with initial values with compact supports. Meanwhile, we
see, by some arguments in Section 2, that the solutions of them can be
extended as entire functions for any fixed positive time point. Hence, the
analyticity of such solutions may have a clue for representing the passed
time in terms of the current heat distributions.
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Although it is implicit, we obtain, by virtue of Theorem 3, a formulation
as follows.

THEOREM 6. Suppose that h(x) (¢ 0) is, to some fixed time to> 0, the
trace of the solution of an initial value problem for the heat equation in
which the initial values are zero outside a bounded set and depend continu­
ously on the space variable. Then the time to is represented by

to = sup(t > 0; IL.II'" h(nexP(- e + Z') d,1

2

q - '" 8t 4t

(
- 3x

2
+ v

2
) )

. exp 12t· dx dy < 00 • (7.1 )

Proof We denote the initial values by F(x). Then we have the expres­
sion

1 00 (( x - n2
)

hex) = ~ I F(nexp - dx.
47Tt o -x 4t o

Setting a = 0 in Theorem 3, it is sufficient to prove that the right hand
side of (7.1) is finite, and that it is equal to or less than to' We assume
that, for some s > to,

I 1

2
00 e z~ - 3x 2 + y2

If I h(nexp( - - + -) d~ exp ( - ) dxdy < 00.
c -00 8s 4s 12s

Again, by Theorem 3, there exists a function G(x) in L 2m) such that

1 x {( x - n2

}
h ( x) = I I G (nexp - d' ,

V47TS -x 4s
X E JR,

and so we obtain, by the method of Fourier transform, the representation

1 00 (( x - n2

)
F(x) = I C(nexp - d~,

J47T( S - to) -00 4( s - to)
x E IR.

This implies that F is the restriction of an entire function to III We
therefore have a contradiction for our hypothesis.
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Remark. In Theorem 2, we have, in general
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THEOREM 7. For G E LP[IR, dx), 1 :0=:; p :0=:; 00, define a linear operator by

where F(x) = G(x)eaX2/2. Then the following inequality holds:

1 :0=:; P :S 00.

Proof For all x E IR,

I[SG]( x) I = fIRh( x - ~, t) ea~2 1
2G( 0 d~ exp { ~ Wa.t( x) }

:S IIGIL,,j~h(x - ~,t)eae/2d~exP{~wa.t(X)}

1
= V IIGllx.

1 - lat

Also,

IISGlll :s fJ fUi<h( x - ~,t) \F( 0 Idg )exp { ~Wa . t ( X)} dx

= fJ fIRh(x - g, t ) exp {~Wa . t ( x) } dx ) IF ( 0 Idg

= h - 2at DF(Ole-aI;2/2d~
Ui<

= V1 - 2at IIGII,.

By the M. Riesz convexity theorem, our inequality is obtained.
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